Phase-doppler interferometry with probe-to-droplet size ratios less than unity. I. Trajectory errors.
نویسندگان
چکیده
Phase-Doppler interferometry in which a probe volume that is much smaller than the droplets being measured has been shown to work well when coupled with a phase-ratio and intensity-validation scheme that is capable of eliminating trajectory-dependent scattering errors. With ray-tracing and geometric-optics models, the type and magnitude of trajectory errors were demonstrated quantitatively through stochastic trajectory calculations. Measurements with monodispersed water droplet streams and glass beads were performed to validate the model calculations and to characterize the probe volume. Scattered-light intensity has also been shown to provide a robust means of determining the probe cross-sectional area, which is critical for making accurate mass flux measurements.
منابع مشابه
Phase-Doppler interferometry with probe-to-droplet size ratios less than unity. II. Application of the technique.
Practical limitations associated with the use of small probe volumes with respect to the droplet size that is being measured by the phase-Doppler interferometry technique are discussed. An intensity-validation scheme and corresponding probe volume correction factor have been developed that reject trajectory errors and account for the rejections in calculation of the probe cross-sectional area. ...
متن کاملTransport of High Boiling Point Fire Suppressants in a Droplet-laden Homogeneous Turbulent Flow past a Cylinder
Liquid agent transport was investigated around unheated and heated horizontal cylinders (to a near-surface temperature of approximately 423 K, i.e., well above the water boiling point) under ambient conditions. Experimental results are presented for a well-characterized, droplet-laden homogenous turbulent flow field, using water, methoxy-nonafluorobutane (i.e., HFE-7100, C4F9OCH3, with a boilin...
متن کاملDroplet Transport in a Swirl-Stabilized Spray Flame
Droplet transport processes that occur in fuel sprays and spray flames were examined using laser velocimetry, phase Doppler interferometry, and laser sheet beam photography. Droplet size and velocity (axial and radial) distributions were obtained in a swirl-stabilized, pressure-atomized kerosene spray under nonburning and burning conditions. The results show that the introduction of swirl to th...
متن کاملDroplet Dynamics of Newtonian and Inelastic Non-Newtonian Fluids in Confinement
Microfluidic droplet technology has been developing rapidly. However, precise control of dynamical behaviour of droplets remains a major hurdle for new designs. This study is to understand droplet deformation and breakup under simple shear flow in confined environment as typically found in microfluidic applications. In addition to the Newtonian–Newtonian system, we consider also both a Newtonia...
متن کاملDroplet dynamics in confinement
This study is to understand confinement effect on the dynamical behaviour of a droplet immersed in an immiscible liquid subjected to a simple shear flow. The lattice Boltzmann method, which uses a forcing term and a recolouring algorithm to realize the interfacial tension effect and phase separation respectively, is adopted to systematically study droplet deformation and breakup in confined con...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Applied optics
دوره 39 22 شماره
صفحات -
تاریخ انتشار 2000